skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Whitaker, Matthew L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Xu, Hongwu (Ed.)
    Abstract We have measured the sound velocities and elasticity of synthetic polycrystalline β-Mg2SiO4 containing 1.2 wt% H2O to 10 GPa and 600 K using ultrasonic interferometry with synchrotron X-radiation. We determined sample length at high pressure and temperature using the sample’s X-radiographic image and applied travel times bond corrections appropriate to the experimental cell assembly configuration. Fitting the entire moduli data to third-order finite strain equations yields the adiabatic bulk [KS0 = 153.3(4) GPa] and shear [G0 = 101.8(2) GPa] moduli, their pressure derivatives (∂KS/∂P)T = 5.15(6) and (∂G/∂P)T = 1.68(3) and temperature derivatives (∂KS/∂T)P = −0.0179(9) GPa/K and (∂G/∂T)P = −0.0151(7) GPa/K. Comparing the bulk sound velocity contrast between the new hydrous wadsleyite data and olivine (0.38 wt% H2O) with seismic bulk sound velocity contrasts of 3.5% and 4.0% yields 53% and 60% olivine content, respectively, assuming an iso-chemical mantle model of the Earth. The results suggest that a hydrous mantle transition zone with a pyrolite model composition could explain the 410 km seismic velocity jump. 
    more » « less
    Free, publicly-accessible full text available May 21, 2026
  2. Free, publicly-accessible full text available July 30, 2026